BEE-L Archives

Informed Discussion of Beekeeping Issues and Bee Biology

BEE-L@COMMUNITY.LSOFT.COM

Options: Use Monospaced Font
Show Text Part by Default
Show All Mail Headers

Message: [<< First] [< Prev] [Next >] [Last >>]
Topic: [<< First] [< Prev] [Next >] [Last >>]
Author: [<< First] [< Prev] [Next >] [Last >>]

Print Reply
Subject:
From:
Medhat Nasr <[log in to unmask]>
Reply To:
Informed Discussion of Beekeeping Issues and Bee Biology <[log in to unmask]>
Date:
Thu, 8 Mar 2018 03:19:00 +0000
Content-Type:
text/plain
Parts/Attachments:
text/plain (23 lines)
Trevor:

In Alberta several beekeepers use irradiation and they are happy about results in terms of AFB, EFB, chalkbrood and nosema.

Recent publication on irradiation by USDA shows interesting results, too.

Gamma irradiation inactivates honey bee fungal, microsporidian, and viral pathogens and parasites.
Simone-Finstrom M, et al. J Invertebr Pathol. 2018.
Show full citation<https://www.ncbi.nlm.nih.gov/m/pubmed/29453966/#>
Abstract

Managed honey bee (Apis mellifera) populations are currently facing unsustainable losses due to a variety of factors. Colonies are challenged with brood pathogens, such as the fungal agent of chalkbrood disease, the microsporidian gut parasite Nosema spp., and several viruses. These pathogens may be transmitted horizontally from worker to worker, vertically from queen to egg and via vectors like the parasitic mite, Varroa destructor. Despite the fact that these pathogens are widespread and often harbored in wax comb that is reused from year to year and transferred across beekeeping operations, few, if any, universal treatments exist for their control. In order to mitigate some of these biological threats to honey bees and to allow for more sustainable reuse of equipment, investigations into techniques for the sterilization of hive equipment and comb are of particular significance. Here, we investigated the potential of gamma irradiation for inactivation of the fungal pathogen Ascosphaera apis, the microsporidian Nosema ceranae and three honey bee viruses (Deformed wing virus [DWV], Black queen cell virus [BQCV], and Chronic bee paralysis virus [CBPV]), focusing on the infectivity of these pathogens post-irradiation. Results indicate that gamma irradiation can effectively inactivate A. apis, N. ceranae, and DWV. Partial inactivation was noted for BQCV and CBPV, but this did not reduce effects on mortality at the tested, relatively high doses. These findings highlight the importance of studying infection rate and symptom development post-treatment and not simply rate or quantity detected. These findings suggest that gamma irradiation may function as a broad treatment to help mitigate colony losses and the spread of pathogens through the exchange of comb across colonies, but raises the question why some viruses appear to be unaffected. These results provide the basis for subsequent studies on benefits of irradiation of used comb for colony health and productivity.

PMID
 29453966 [PubMed - as supplied by publisher]
Medhat
This email and any files transmitted with it are confidential and intended solely for the use of the individual or entity to whom they are addressed. If you have received this email in error please notify the system manager. This message contains confidential information and is intended only for the individual named. If you are not the named addressee you should not disseminate, distribute or copy this e-mail.

             ***********************************************
The BEE-L mailing list is powered by L-Soft's renowned
LISTSERV(R) list management software.  For more information, go to:
http://www.lsoft.com/LISTSERV-powered.html

ATOM RSS1 RSS2