BEE-L Archives

Informed Discussion of Beekeeping Issues and Bee Biology

BEE-L@COMMUNITY.LSOFT.COM

Options: Use Monospaced Font
Show Text Part by Default
Show All Mail Headers

Message: [<< First] [< Prev] [Next >] [Last >>]
Topic: [<< First] [< Prev] [Next >] [Last >>]
Author: [<< First] [< Prev] [Next >] [Last >>]

Print Reply
Subject:
From:
Peter Borst <[log in to unmask]>
Reply To:
Informed Discussion of Beekeeping Issues and Bee Biology <[log in to unmask]>
Date:
Sun, 8 Oct 2017 16:33:38 -0400
Content-Type:
text/plain
Parts/Attachments:
text/plain (19 lines)
More than 30 specific visible mutations have been described in bees, and a number of these are maintained by research laboratories. Generally, these mutations produce a striking effect, and the majority have been easily observed by their discoverers. Many other mutations might occur in bees that also cause subtle changes yet to be observed. Known mutations affect the color, shape, and presence of eyes, the color and hairiness of bodies, the shape and size of wings, and nest-cleaning behavior.

Probably because of their distinctive appearance, most of the honey bee mutants thus far collected had variations in color of eyes. Various shades of white, tan, chartreuse, and red have been described and about 20 still are maintained. In addition to their value as curiosities, these mutants have value as scientific tools. For example, by studying various colors of eye mutants, the biochemical pathway for the production of eye pigments in honey bees was determined.

In addition to contributing to work on eye pigment biochemistry, mutants have been used as tools to investigate a variety of other questions. Resistance to American foulbrood, mating behavior, sex determination, pollination activity, fertilization technology, sperm storage, population dynamics, longevity, and bioacoustics all have been explored with experimental designs utilizing bees identifiably different because of mutations they carry. 

Most mutations are recessive. Mutations, therefore, are often first observed in drones, for drones are haploid and do not mask recessive genes. A mutation might occur in a single drone in a colony or in many drones.

Breeding and Genetics of Honey Bees
By JOHN R. HARBO AND THOMAS E. RINDERER
BEEKEEPING IN THE UNITED STATES
AGRICULTURE HANDBOOK NUMBER 335
Revised October 1980

             ***********************************************
The BEE-L mailing list is powered by L-Soft's renowned
LISTSERV(R) list management software.  For more information, go to:
http://www.lsoft.com/LISTSERV-powered.html

ATOM RSS1 RSS2